Measuring Complexity by Measuring Structure and Organization

Gregory S. Hornby

Abstract— Necessaryfor furthering the developmentof more
powerful evolutionary design systems, capable of scaling to
evolving more sophisticatedand complexartifacts, is the ability
to meaningfully and objectively compare these systems by
applying complexity measures to the artifacts they evolve.
Previously we have proposed measures of modularity, reuse
and hierarchy (MR&H), here we compare these measures to
onesfrom the elds of Complexity, SystemsEngineering and
Computer Programming. In addition, we proposeseveral ways
of combining the MR&H measuees into a single measure of
structure and organization We compare all of these measures
empirically aswell ason threesampleobjectsand nd that the
best measutes of complexity are two of the proposedmeasures
of structure and organization.

I. INTRODUCTION

Over the yearsresearcherhiave developed mary differ-
ent evolutionary design systems,some inspired by natural
embryogeniesand somebasedon engineeringand software
development4], [5]. Necessaryo furtherthe scienceof evo-
lutionary designare metricsthat meaningfully comparethe
compleity of evolved productsof thesedifferent systems.
Ideally, thesemetricsshouldgive someguidanceasto how
to constructbetter evolutionary designsystems suchas by
measuringhosecharacteristicshatareneededor achieving
scalability

As yet, whatlittle work hasbeendonetoward developing
a theory of complity and scalability has generally been
to proposecharacteristicspr categories, of representations
for evolutionary designsystemsbut not well-de ned metrics
for measuringthem. Angeline classi es representationby
whether or not they allow reuse of genotypic elements,
and then whetheror not the evolved generatre systemis
local to each individual or sharedacrossthe population
[1]. Bentley and Kumar distinguishbetweenrepresentations
which directly encodean object and then distinguish be-
tweenthosethat indirectly encodean objectimplicitly, like
cellular automata,or explicitly, like a computer program
[3]. Komosinksiand Rotaru-\arga list several characteristics
of representation$or a creaturedesignproblem, of which
modularity compressionand redundang are generalizable
to other design domains [15]. Stanle and Miikkulainen
take ve attributesof embryogeniesrom naturalbiology as
their dimensionsfor classifying representations- cell fate,
targeting, heterochrow, canalizationand complei cation —
but it is dif cult to apply theseattributesto representations
that are not modelsof developmentalbiology [22].

Oneexceptionin which well-de ned metricsaregivenfor
an object's descriptionis from our previous work, in which
we proposedthat modularity reuseand hierarcly (MR&H)

G. S. Hornby is with U.C. SantaCruz, Mail Stop 269-3, Moffett Field,
CA (hornby@email.arc.nasaxjo

arethe characteristicgor improving scalabilityandin which
we de ned metrics for measuringthem [12]. In this paper
we compareour metricsof MR&H against several existing
compl«ity measuregrom outsidethe eld of Evolutionary
ComputationFurther we proposeseveralwaysof combining
ourmeasuresf MR&H into asinglemeasuref thestructue
and organizationof an object’s encoding.

Our comparisonof metricsconsistsof both an empirical
comparisoraswell asby testingthe metricson threedifferent
scenarios.The empirical comparisonconsistsof evolving
designdor differentsizesof a scalabledesignproblemandis
basedon the assumptiorthat as the problemscalesup, the
compleity of evolved designsshould increase.The three
scenariosconsist of examining the compleity scoreson
hypotheticalobjects which areconstructedn differentways,
and seeinghow intuitive they scorefor them. The resultsof
comparisonshav that the bestmeasuref complity are
two of our measure®f structureand organization.

The rest of this paperis organizedas follows. First, we
describeour model of designrepresentationssince this is
neededto de ne the metrics operateon them. Second,we
presenbur measuresf Modularity, ReuseandHierarcty (in
Sectionlll) andthe othermeasuresve compareghemagainst
(in SectionlV). Next we describeour experimentalsetup
for comparingthe differentmeasuresn SectionV. Thenwe
presentthe resultsof comparingthe different measuresn
differentsizesof a designproblem(SectionVI). We follow
this with our work in developing a metric for measuring
structure and organization by combining the measuresof
modularity reuseandhierarcly. Finally we closewith amore
generaldiscussiorof whatelseneedgo be measure@dndour
conclusions.

Il. DESIGN ENCODINGS ARE PROGRAMS

Before de ning variousmeasure®f artifacts, it is worth
describinghe paradigmunderwhich thesemeasurementare
being taken. To de ne metricsof an artifact in a way that
generalizescrossvarioustypesof artifacts,ratherthantake
measurementsf actualfabricatedartifactswe take measure-
mentson the datastructureghatencodeheseartifacts.These
datastructuresanbethoughtof asa forestof tree-structured
objects,in which eachobjectdescribegshe assemblyof some
parts,or sub-assembliesnto a larger one (seeFigure 1(a)).
Since this data-structurale nes how the artifact is “built,”
we considerit a programfor building it. Justas computer
programshave procedurecalls anditerative loops,sotoo can
designprogramshave analogousconstructslf we addlinks
to thetreesto representhe jumpsfrom theseprocedurecalls
and backto the startof an iterative loop this resultsin this
forest of treesreally being one large, inter-connectedyraph

@ (b)

Fig. 1. A graphicalrenditionof a designprogramin which differentshapes
represendifferenttypesof operatorsi(a) the tree structuredproceduresn
the program;(b) thetree-structuregrroceduresn the programwith thelinks
addedto shav procedurecalls andthe extent of iterative loops.

comprisedf multiple sub-graphgor eachsub-assemblyand
sub-sub-graphgor the sub-sub-assembliegnd so on (see
Figure1(b)). Thuswhereaghe elds of ComputatioriTheory
and Compl«ity considerprogramsto be strings(on the tape
usedby a Turing Machine)herewe considemprogramsto be
graphs.

Continuing with the “design encodingis really a design
program” metaphorthesegraph-structuredlesignprograms
can be compiledto producea tree-structuredet of design-
constructingoperatorsin which all the iterative loops have
beenunrareledandall theprocedurecallshave beenreplaced
with the operatorsinside them. We call this compiled-out
tree-structurethe assemblyprocedurefor constructingthe
design.

In the eld of Evolutionary Algorithms, the designpro-
gram is the genotype,the actual artifact (or design)is the
phenotype,and the assemblyprocedureis an intermediate
layer betweengenotypeand phenotype Examplesof types
of design programsare the arti cial genesin a genetic
regulatory network, the rulesof a cellular automataandthe
genotypein GeneticProgrammingln the experimentsn this
paperthe genotypewe are evolving is the designprogram,
andit is compiledinto an assemblyprocedurewhich is then
sentto a design-constructoto createthe phenotype- this
will bedescribedn moredetailin SectionV-B. Someof the
measurepresentedn the following two sectionswill be of
the designprogramand someof them be of the assembly
procedure.

I1l. MEASURING MODULARITY,
REUSE AND HIERARCHY

The methodfor measuringMR&H comesout of what is
meantby theseterms.Modularity is de ned asan encapsu-
lated group of elementsthat can be manipulatedas a unit,
reuseis arepetitionor similarity in a design,andhierarchy is
thenumberof layersof encapsulatechodulesin thestructure
of a design.

Eachof MR&H aidsthe scalabilityof evolutionarydesign
systemdn differentways.Modularity is relatedto the build-
ing block hypothesisof geneticalgorithms(GAs) [9], which

statesthat GAs work by testinggroupsof basiccomponents
and combiningthemto form highly t solutions.Simon,in
his parableof two watchmalers, illustrated how the ability
to createand manipulatemodulesgreatly improves the rate
at which morestructurallysophisticatedrtifactscanbe built
[20]. For larger and more sophisticatedrtifacts,being able
to hierarchicallycreatelevels of nestedmodulesis needed
to break things down so no one module is too large and
sophisticatedo evolve onits own. Beingableto reusedesign
modulesis helpful in two ways.First,a modulethatis useful
in one part of the design may be useful somevhere else
so creatingmodulesis a way of scaling the basic unit of
variation.Secondreuseof a parametgrassemblyor function
is a way of capturing design dependenciesnto a single
location in the designencodingtherebyenablingvariation
operatorsto more easily make coordinatedchangesin the
design.The measure®f MR&H cannow be de ned.

Modularity : The modularity value of a designis a count
of the numberof structuralmodulesin it, which we de ne
asanencapsulatedroupof elementsn the designencoding
thatcanbe manipulatedasa unit. Sincealabelto aprocedure
can be manipulatedas a unit, eachprocedurein the design
encodingcountsasonetowardthe encodednodularityvalue.
In addition, the ability to changethe iterationcountermeans
thatthe group of encodecelementsnside an iterative block
also constitutea module, henceeachiterative block is one
module in the encoding.As well as counting modulesin
the encodeddesign(which we label M,, for modulesin the
program)we can also count the numberof occurrencesof
modulesin the designitself, My. In this caseeachprocedure
call countsas one toward the designmodularity value and
eachiterationof aniterative block addsoneto the modularity
value of the design.

Reuse is a measureof the amountof reuseof genotypic
elementsin creatingthe phenotypelt canbe calculatedby
countingthe “size” of the objectanddividing this by the size
of the encoding For example,the amountof reusein a string
is the size of the string divided by the size of the program
the generateghe string. Here we measurethree types of
reuse.The rst, overall reuse,R,, is the averageamount
of reuseof a symbol and is calculatedas the size of the
designs assemblyproceduralivided by the sizeof thedesign
program.Secondreuseof build symbols,Ry, is the average
numberof timesa designconstructingoperator— asopposed
to an operatorthat is a conditional, iteratve statementor
procedurecall — is used.Third, reuseof modules Ry, is the
averagenumberof times modulesare reusedin the design
andis calculatedas My divided by M,.

Hierarchy: The hierarcly of an encodeddesignis a
measureof the numberof nestedlayers of modules,such
asthroughiteration or abstraction A designencodingwith
no moduleshas a hierarcly of zero. Each nestedmodule,
whethera successfukall to a labeledprocedureor a non-
empty iterative block, increaseghe hierarcly value by one.
Thisis similarto measuringhe depthof anobjects assembly
sequencg8], but whereagherethe measuras of basicsteps

in constructingan object,herewe are measuringnodulesof
basicsteps.

As de ned, these measuresof MR&H apply to ary
programming language,and are thus comparableon the
samesystemsasexisting complity measuressuchasAIC,
Logical Depth and SophisticationThesemeasuregan also
begeneralizedo ary representatiowith a hierarchicalgraph
structure suchasthe setof partsusedto describea complec
assemblyin a CAD/CAM packageandary systemthat can
be describedas a hierarchical graph structure,such as a
regular expression.Not as obvious is how to apply these
measure$o non-proceduralepresentationsuchasDNA and
arti cial geneticregulatorynetworks,for whichthechallenge
is mainly the identi cation of modules.

In therestof this paperwe useMRHo referto the metrics
for modularity reuseand hierarcly and MR&H to refer to
the characteristicof modularity reuseand hierarcly. Also,
in SectionVIl we discusshow to combinethesemeasures
of MRHinto a single measurewhich we call a measureof
structule and organization

IV. COMPLEXITY METRICS

Eventhoughthe MRHmetricswere developedspeci cally
for computerautomateddesignthey may not be ary better
for comparinghe sophisticatiorof evolveddesignsassimilar
metrics developedin related elds. One of the objectves
of this paperis to comparethesemetrics against onesthat
alreadyexist. For this comparisonve selectedhosemetrics
which are relatively straightforvard to computeor approx-
imate and which we thought had a reasonablechanceat
beingrelevant. Exampleof someof measuresve left outare:
Arithmetic Compleity, Cognitve Compleity, Dimension
of Attractor, Easeof Decomposition,Logical Compleity,
Mutual Information, Number of Inequivalent Descriptions,
Numberof Statedn a Finite Automata,Numberof Variables,
Thermodynamidepth, and Variety (all of thesemeasures,
as well as several others, are reviewed in [7]). We now
presentthe metricswhich we compareMRHagginst.

Algorithmic Information Content (AIC) is one of most
well knowvn andin uential complity metrics,having been
usedas a starting point for mary others,and was invented
separatelpy Chaitin[6], Kolmogoro [14], and Solomonof
[21]. The AIC of a given string is the length,in numberof
symbols,of the shortestprogramthat producesthat string.
For this work we estimatethe AIC by calculatingthe number
of symbolsin the designprogramsincethis is the evolved
genotypethat de nesthe object. While it is likely thatsome
of the evolved genotypescould be compressedusing their
sizeis asimpleupperboundon AIC andis a correctmeasure
of the size of the programthat wasevolved. This measuréds
alsoanalogougo countingthe numberof linesin acomputer
program,which is one measureof its compleity [7].

Designsizeis a measuref the sizeof whatis encodedy
the designprogram,and here we measurethis by counting
the numberof symbolsin the assemblyprocedure.In the
eld of Compleity, in which thereis a string and program

that producesthat string, this measurewould be a count of
the size of the string.

Logical Depth is a measureof the value of information
and, for a given string, it is the minimum running time
of a nearincompressibleprogramthat producesthe string
[2]. In this casewe use the evolved design program as
the nearincompressibleprogramand calculatethe running
time of this program as the number of symbolsthat are
processedn generatingthe assemblyprocedure.This can
also be consideredcomputationcompleity, in thatit is a
measureof the amountof computationaltime that is spent
to computethe assemblyprocedure.

Sophistication is a measureof the structureof a string
by counting the numberof control symbolsin the design
programusedto generateit [16]. In trying to measurethe
structureof a string, the goal for this measures similar to
the goal of MRHmetrics.Herewe calculatethe sophistication
of adesignby countingthe numberof controlsymbols- that
is, proceduresymbols,loop symbols,conditionals— in the
programthatis usedto generateit.

Number of Build Symbols whereasSophisticationis
a measureof structureby countingthe numberof control
symbols,we proposea countermeasuravhich is a count of
the numberof non-controlsymbolsin the designprogram
that is usedto generatethe assemblyprocedure.In our
system thesenon-controlsymbolsarethe operatorghat are
usedby the design-constructininterpreterandwe call them
build symbols,sincethey are usedto build a 3D shape.

Grammar Size ary string that has a pattern can be
expressedas being generatedy a grammar Simple strings,
with simple patterns generallyhave a simple grammarthus
thesizeof thegrammameededo producea stringsenesasa
measuref complity [7]. Sincetherepresentationsedhere
is basedon parametridLindenmayersystemq18], (although
it is morelike GeneticProgramming17]) the proceduregan
be thoughtof as grammarrules. To calculatethe grammar
size of an assemblyprocedurewe usethe designprogram
that producesit as the grammarand count the number of
production-rulesn it.

Connectivity: more comple systemshave greaterinter
connectednedsetweencomponentsthusthe connectiity of
a systemcan be usedas a complity measure[7]. For a
graph-structureits connectvity is the maximumnumberof
edgesthat can be removed beforeit is split into two non-
connectedgraphs.To calculatethe connectvity of a design
we usethe connectity of the designprogramthatis used
to generatet, sincethis programhasa graph-structureo it.

Number of Branches inspiredby the previous measure
of compl«ity, anothemeasureof the structureof a graphis
a countof numberof nodeswhich arebranchnodes— nodes
which have two or morechildren. Stringshave a very simple
structurewith no branchingnodes whereasa fully balanced
binary tree will have roughly Ig(n) branchnodes.For this
measurewe countthe numberof branchesn the assembly
procedureproducedby the designprogram.

Height: is the maximum number of edgesthat can be

traversedin going from the root of the tree to a leaf node.
Unlike othercompleity metrics,which arebasedon strings,
this measureis for treesand here we apply this measure
to the assemblyprocedurethat is generatedby the design
program.This measureof compleity is relatedto work in

formal languagetheory in which ideasfor measuringease
of comprehensiorare to measurethe depth of postponed
symbols[23] or depthand nesting,called SyntacticDepth,
[19].

V. EXPERIMENTAL SETUP

To comparemetricswe useanexisting evolutionarydesign
systemon a previously usedbenchmarkproblem.The evo-
lutionary designsystemwe useis GENRE, and this system
allows the userto selectwhich of combinationsof MR&H
to enableby selectingwhich aspectof a programminglan-
guage(conditionals,labeledproceduresanditerative loops)
are available to the representation11]. To comparethe
different metricsof compleity we perform runs with them
on differentsizesof a scalabledesignproblem.

A. TestProblem

For the experimentsin this paper the design problem
we useis that of producinga 3D table out of cubes,for
which the tness function for scoringtablesis a function
of their height, surface structure, stability and number of
excesscubesused[10]. Heightis the numberof cubesabore
the ground. Surface structureis the numberof cubesat the
maximumheight. Stability is a function of the volumeof the
tableandis calculatedby summingthe areaat eachlayer of
the table. Maximizing height, surface structureand stability
typically resultsin table designsthatare solid volumes,thus
a measureof excesscubesis usedto reward designghatuse
fewer bricks,

freight = theheightof the highestcube, Ynax :
fsurface = thenumberof cubesat Yy :
Y)an
fstavil ity = farea(y)
y=0
farea(y) = areain the corvex hull at heighty.
fexcess = humberof cubesnot on the surface.

To producea single tness scorefor a designthese ve
criteria are combinedtogether:

1)

This problemcan be scaledby varying the size of the grid.
In our experimentswe do runswith sizesfrom20 20 20
to80 80 80.

The design constructorfor making table designsstarts
with a single cubein an otherwiseempty 3D grid andthen
executesthe assemblyprocedurethat was producedfrom
compiling the genotype Cubesareaddedto this designwith
the operatordorward() andbackward() . The current
state, consistingof location and orientation,is maintained
with theadditionof cubesresultingin a changein the current

f stabil ity =fexcess

tness = fheight fsurface

location and the rotate-xyz() operators change the

currentorientation.A branchingin the assemblyprocedure
resultsin a split in the constructiorprocesswith construction
continuingwith eachchild subtreenvorking with its own copy

of the constructionstate.

B. Repesentation

In the following examplewe demonstratehe representa-
tion and methodfor creatinga designas well as calculate
its compleity scoresusingthe differentcompleity metrics.
This example designencodingconsistsof a starting com-
mand,Proc0(4.0,2.0),andtwo labeledproceduresProc 0
andProc _1, eachwith two parameters:

Proc0(4:0;2:0) :

ProcO(ng;ny) :

no > 3:.0! rotate-z(1) [Proc0(1.0,2.0) re-
peat(2)[forwardn1/2) [repeat-end
[Procl(np+2.0,2.0)[forward(1)]
100111

true! rotate-z(1) [repeat(4) [rotate-

y(1) [forward(n,+1.0) repeat-end
rotate-x(1)] 1 1 I]

Procl(ng;ny) :

nog> 1:0! forward(2) [Proc1(1.0n;+1.0)
[forward(1l)] rotate-y(2) [T[]
Proc1(1.0n,+1.0) [forward(1)]]
Proc1(ng-2.0n1-1.0) [end-proc]
]

Ng > 0:0! rotate-y(1)[[] backwardf,) [end-

proc(]]]

A graphical version of this design programis shown in
Figure 1.

To generatethe assembly procedure for this design
program it is executed, starting with the statement
Proc _.0(4.0,2.0) This results in the following
assemblyprocedure:
rotate-z(1) [rotate-z(1) [rotate-y(1)

[forward(3) rotate-y(1) [forward(3)
rotate-y(1) [forward(3) rotate-y(1)

[forward(3) rotate-x(1) 111110 1
forward(1) [forward(1) [forward(2) [
rotate-y(1) [0 backward(3) [forward(1)
0 1 1 rotate-y(2) [[rotate-y(1) [

[backward(3) [forward(1) 0 111
forward(2) [rotate-y(1) [1 backward(2)
[forward(1) I 1 1 rotate-y(2) [11
rotate-y(1) [0 backward(2) [forward(1)
0 111 forward(2) [rotate-y(1) [10
backward(1l) [forward(1) b 11 rotate-
y(2) [[] rotate-y(1) [0 backward(l) [
forward(1) 0 111 forward(1) 11110

0 10011

Fig.2. The3D objectthatis constructedrom theexampledesignencoding.

This example designcan be analyzedusing the metrics
of MRHand the variouscompl«ity measuresThe program
has six modulesthat are useda total of 17 times giving a
modularity value of 6 for the encodingand a modularity
value of 17 for the design.The size of the programis 30
symbolsand the size of the nal assemblyprocedureis 38
symbolsgiving a reusevalue of 1.27,andit has ve levels
of nestedmoduleswhich givesit a hierarcly value of 5. Its
scoreson the other compleity measuresire:an AIC of 30;
a Designsizeof 38; aLogical Depthof 124;a Sophistication
of 21; 13 build symbols;a grammarsize of 2; a connectvity
of 5; 8 branchesanda heightof 10.

C. EvolutionaryAlgorithm

The EA used for the experimentsis the Age-Layered
PopulationStructure(ALPS) [13]. Unlike a traditional EA,
ALPS maintainsseverallayersof individualsof differentage
levels and continuouslyintroducesnew, randomlygenerated
individuals into the rst layer It hasbeenshovn to work
betterthan the canonicalEA by better avoiding premature
convergence.The setupwe use consistsof 10 layers, each
with 40 individuals.In eachlayerthe best2 individualsfrom
the previous generatiorare copiedto the currentgeneration
and then new individuals are createdwith a 40% chance
of mutationand 60% chanceof recombination.Tournament
selectionwith atournamensizeof 5 is usedto selectparents.
In our experimentswe run 15 trials with eachcon guration
and eachtrial is run for one million evaluations.

V1. EMPIRICAL COMPARISON

To comparecompleity andMRHmetricswe rana number
of experimentson different sizesof a designproblem.The
designproblemandevolutionaryalgorithmweredescribedn
theprevious section,andfor theseexperimentsve performed
four setsof experimentsin which we evolved tablesfor four
differentgrid sizes Herewe areworking with theassumption
that a more “complex” designis neededto producegood
designsfor a larger designspaceand so we are looking for
complity metrics whose valuesscale similarly to design
size.

Figure 3 containsimagesof two of the bestand most
structurally organizedtablesthat were evolved. The smaller

() (b)

Fig. 3. Two of the best,and most structurally organized,of the evolved
tables.The ®rst (a) wasevolvedin the20 20 20 designspaceandthe
second(b) wasevolvedin the80 80 80 designspace.

TABLE |
A COMPARISON OF THE RESULTING SCORES ON THE DIFFERENT
METRICS OF THE BEST TABLES EVOLVED WITH THE DIFFERENT
REPRESENTATIONS. RESULTS ARE THE AVERAGE OVER 15 TRIALS.

20° 40° 60° 80°

Fitness(1CP) | 0.56 18.1 123 440

AIC 719 768 680 775

DesignSize | 6769 9499 9739 9944

Log. Depth | 9541 13421 14376 18011
Sophistication| 79.9 70.53 74.0 85.4

Bld Sym 626 684 593 676
GrammarSize | 13.5 13.2 12.5 13.5
Connectvity 33.7 25.2 26.4 37.3

Branches| 1653 2087 1905 1825

Height | 118 145 276 220

Modularity (Mp) | 27.5 26.1 30.8 311
Mod. in Design(My) 377 547 1133 1329
Reuse(R.) | 12.1 14.0 16.6 15.7

Reuseof Bld. (R,) | 15.2 16.2 19.6 18.5
Reuseof Mod. (Rm) | 15.2 21.8 37.4 50.1
Hierarclty (H) | 7.53 7.7 8.0 8.6

table, Figure 3(a), was evolved in the 20 20 20 design
spaceandhasa tness of 582221andthe following scores:
AIC of 913; DesignSize of 8007; Logical Depthof 10311,
Sophisticationof 89; 811 build symbols;a GrammarSize
of 13; a Connectvity of 34; 1595branchesand a height of

155. Its MRHscoresare: M, is 34, My is 431; R, is 8.8; Ry

is 9.9; Ry, is 12.7 andit hasan H of 8. The larger table,
Figure 3(b), was evolved in the 80 80 80 designspace
and hasa tness of 600324286and the following scores:
AIC of 630; DesignSize of 9753; Logical Depth of 14365;
Sophisticationof 90; 529 build symbols;a GrammarSize
of 11; a Connectvity of 58; 1668 branchesanda height of

168. Its MRHscoresare: M, is 20, My is 2202; R, is 15.5;
R, is 18.4; R, is 110.1andit hasan H of 9. While these
scoresgive examplesof the differencesthat can happen,a
betteroverall pictureis gainedfrom looking at the average
scoresfrom a numberof evolutionaryrunson differentsizes
of the designproblem.

Table | lists the average values over 15 trials of the
different measuresas applied to the best tables evolved
on different sizes of the design problem (20 20 20,
40 40 40,60 60 60, and80 80 80). As expected,
the averagedbest thess monotonicallyincreasesalongwith

(@

(b)

Fig. 4. A graphicalrendition of the assemblyproceduredor constructingthe two tablesin Figure 3.

anincreasen size of the designspace The measuresvhich
have valuesthat also monotonicallyincreasen stepwith an
increasen sizeof the designspaceare:DesignSize,Logical
Depth, My, Ry, and H. Of theseit is not surprising that
DesignSizeincreaseith the size of the designspaceand,
giventhatthe DesignSizeincreasesit is alsonot surprising
that Logical Depth (a measureof the running time of the
programthat createshe assemblyprocedure)klsoincreases
with size of the designspace.Interestingly the information
in a design,AIC, doesnot grow monotonically with size
of the designspaceor Design Size. In addition, none of
the othermeasuregrows monotonicallywith the size of the
designspaceexcept someof the measure®of structureand
organization:the amountof modularity in the design(My),
the reuseof modules(Ry,) andhierarcly (H).

Of the three measuresof reuse,R;, R, and Ry, only
modular reuse(Ry,) monotonicallyincreaseswith the size
of the designspaceandthe tness of the bestdesigns.This
suggestghat the type of reusethat is usefulis not overall
reuse(R,) or reuseof build symbols(R,), but the reuseof
modules.By extension,this also suggestghat thosedesign
representationahich do not have the ability to hierarchically
assembleand reusemoduleswill not scalewell.

Of the two modularity measuresMy monotonically in-
creasedalong with the increasein tness and size of the
designspacewhereasV, was higherin the 20 20 20
spacethanin the40 40 40 spaceSinceM is a product
of the numberof modulesin a designprogram(M andthe
amountof reuseof thesemodules(R,) it may be a more
reliablemeasuref “complexity” becausét is a combination
of two separateaspects:modularity and a modular reuse.
This suggestshat measuringmodularity aloneis not a good
overall measureof the complity of an object and that
combiningthe measuresf all threecharacteristicef MR&H

into a single measuramay resultin an even bettermeasure
of an objects structureand organization.

VII. MEASURES OF STRUCTURE AND ORGANIZATION

Each of the proposedmetrics of modularity reuseand
hierarcly measuredifferent aspectsof the structure and
organization of an object. Of interest is combining the
scoresof thesethree metrics into a measureof structure
and organizationwith a single value, for which there are
various methodsof doing this. One methodfor combining
thethreescoresof MRHnNto a singlevalueis by treatingeach
of themasthe orthogonakxesof a 3D systemandthenusing
the length of the vector from the origin as the measureof
structureand organizationof an object. Since the measure
of modularreuseworked well on its own, we also include
a variantof this measureof structureandorganizationusing
modularreuseinsteadof overall reuse.

|OM2+ RZ+ H2
M2+ R3 + H?

SO]_ =
SOZ =

()
©)

A problemwith this approachis that the different metrics
vary in their range,and a small changein hierarcly will
generally have little impact on the overall structure and
organization measureof an object since hierarcly usually
hasthe smallestvalue.

Anothermethodfor combiningthe threeMRHscoresis to
simply multiply themtogether

SO;= M
SO4: M

Ra H
Rm H

4)
®)
This approachhas the desirableproperty that a changeof

X % in ary one of MRHwill resultin the sameX % change
in the overall measureof structureand organization,

TABLE I
DIFFERENT WAY S OF COMBINING MRHSCORES TO PRODUCE A SINGLE
MEASURE OF STRUCTURE AND ORGANIZATION.

200 400 60 80°

Fitness(10P) 056 18.1 123 440
SO1: MR H 313 311 371 37l
S0,: MRi H 340 360 516 644
SOs: M Ra H 2013 2872 3708 4019
S04: M Rm H 2889 4324 8643 11207
SOs: TR H 031 031 038 040
SOs: A 042 046 089 113
SO7: M Rs H/AIC | 322 468 675 677
SOs: M Rn H/AIC | 459 687 154 193

Of concernwith the initial approacheso measuringstruc-
ture and organizationare that they do not take into account
eitherthe size of the objector the amountof informationin
it. For example, a large object with a small percentageof
its information organizedinto some structurecan outscore
a much smaller object which has a small, maximally-
organized,designprogram.Two waysto normalizestructure
and organizationscoresfor size areto divide by the size of
the objectandto divide by the amountof informationin the
object.

SOs = '\éesizﬁ (6)
SO¢ = N[')esizir”:su'; 7
so;= 4 e H ®)
S0p= Mm M ©

Table VIl containsthe scoresfor thesedifferentmeasures
of structureand organization(SO) on the bestdesignpro-
gramsevolved for differentsizesof the designproblem.Of
theseeight measureof structureand organization,neither
SO; and SOs, both of which use overall reuse and not
modular reuse,increasemonotonically along with the size
of the design space.The other six measuresof structure
and organizationdo increasemonotonically with the four
measuref structureand organizationwhich use modular
reuse(Ry), insteadof overall reuse,scalingin a way that
bettermatcheghe increasein designspaceandthe increase
in tness.

VIll. COMPARING MEASURES ON EXAMPLES

Oneshortcomingwith somemeasuresf complity, such
asAlC, is thatthey are not very intuitive. We can examine
how intuitive thesemeasureof structureand organization
are by trying themon a coupleof examples.First, consider
the AIC of an algorithmically randombit string, by which
is meantone with no regularities. Since the string has no
regularitiesit cannotbe compressedso its AIC is the size
of the string plus the overheadnecessaryfor the print
operator Comparethis to the MRHand structureand organi-
zation valuesof this string: its modularity value is 0, since

it hasno modules,its reusevalue is 1, sincethere are no

reusedsymbols,andits hierarcly valueis 0, sincethereis no

moduleso be nestedUsingthesevaluesits variousstructure
andorganizationvalues(SO; ...S0Og) are:1,1,0,0,0,0,0,

andO0. Thesevaluesof 0 and1 for the measure®f MRHand
structureand organizationmatchour intuition thata random
string doesnot have a sophisticatedstructure.

Next, considerwhat happensto the structureand orga-
nization valueswhen an object, A1, is joined to itself to
form a new object, A,. In this casethe designprogramof
the new object, A,, would be the sameas for the original
object, plus the module, A, = A; + A;. As a result of
this new module,the hierarcly of A, would be H(A1) plus
1 and the modularity would be M,(A1) plus 1. Depending
on the AIC of A, the amountof reusewill be up to
a factor of 2 larger for the new object since R(A,) =
DS(AAI)J'C[ZESAI” k. whereKk is the size of addingthe new
moduleand D S(A) is the DesignSize of A. As a resultof
thesechangedn MRH the structureand organizationvalues
of SOs throughSOg shouldbe only slightly larger, but those
of SO3(A2) and SO4(A;) will be roughly double that of
A;:. Considerwhat happengo other scoresof compleity:
AIC, Sophisticatiorand GrammarSize increaseslightly but
Logical Depth doubles.Since A, is just two copiesof Ay,
it is not clear that it should have twice the compleity of
A1, thusmeasure$0Os5 throughSOg aremoreintuitive than
SO03(A5), SO4(A2) andlogical depthon this example.

Similarly, considerthe casein which two completely
differentobjects,A; and Az, with the samecompleity and
MRHscores,are combinedto form a new object,A4: Ay =
A1+ As. In this casethe nev moduleresultsin the hierarcly
of the new objectbeingoneplusthehierarcly of eitherof its
componentbjects:H(A4) = HA) + 1= H(A3) + 1. The
modularity of this new objectis equalto one plus the sum
of its to componenbbjects:MA4) = My(A1) + Mp(Az) + 1.
Whereasboth modularity and hierarcly increase this new
object hasa reuseslightly lessthan both of its component
objectssincethe sizeof the phenotypds D S(O;) + D S(O3)
but the size of the genotypeis Al C(0O;) + Al C(O3) plus
some additional symbolsfor specifyingAs = A; + Azl
Thus SO3 and SO, would be (roughly) double in value
for A, asthey arefor A; and A,, but SOs through SOg
would changelittle since both AIC and designsize would
also(roughly) doublein size.Not only would AIC for A4 be
roughly doublethatof eitherA; or Az, but sowould Logical
Depth,Sophisticationand GrammarSize.Justascombining
an objectwith itself doesnot seemlike it shouldleadto a
doublingin compleity, neitherdoesit seemthat combining
two completelydifferent objectswith the samecompleity
shouldleadto a doubling of compl«ity. Thus, as with the
previous example,we nd thatthe more intuitive measures
are SOs throughSQOg.

1To be precise the designprogramsfor both A; andA3 have a starting
rule, oneof theseis keptandis changedo callthenewv rule,As = A1+ Ag,
andthe otherstartingrule is deletedso the AIC of A4 is only a coupleof
symbolslargerthan Al C(A1) + Al C(A3).

To summarizethe resultsof thesethreeexampleswe can
statesomedesirablepropertiesof a measureof compleity:

1: The compleity value of a random string should be
small.

2. Thecompleity valueof anobjectjoinedto itself should
be only slightly larger thanthat of the original object.

3: The complity value of two objects joined together
shouldnot be smallerthan the lesservalue of the two
original objectsandshouldnot be muchlarger thanthe
greatervalue of the two original objects.

Using theseprinciples,andthe resultsof the experimentsin
SectionVI, the best measuref compleity are SOg and
SOg.

IX. CONCLUSION

Necessaryfor the advancementof scalableevolutionary
systemsds theidenti cation of the fundamentapropertiesof
such systemsand metrics for measuringthem. As yet, the
only clear metricsto come from the eld of Evolutionary
Computatiormremeasuresf modularity reuseandhierarcly
(MRH. Here we comparedthe MRHmeasuresto various
measuref compleity from other elds with the goal of
identifying which onesbestscalewith what we intuitively
think of as compl«ity. In addition, we proposedvarious
measureof structue and organizationby combining the
measure®f MRHin variousways.

Working with the hypothesisthat by scalingthe size of
a problem, more “complex” solutionsare requiredto solve
it, we comparedall measuresoth empirically as well as
against the other complity measureson measurethree
exampleobjects.All of the othercompleity measuregither
failedto scalecorrectlyin our empiricalcomparisonpr gave
unintuitive resultsfor at leastoneof our exampleobjects.Of
the measuresve proposediwo of our measure®f structure
and organizationpassedall of the testsand so we conclude
that the best measuresf compleity are SOg and SOg,
which are the productof multiplying the MR&H measures
together and then normalizing by either dividing by AIC
(SOg) or by dividing by the designsize (SOg).

To summarizewhile theamountof informationin adesign
is certainly an important factor for measuringcompleity,
AIC producesunintuitive scoresfor variousexamples.Sim-
ilarly, the other measuresof compleity (Logical Depth,
Sophistication,..) all fail to passat leastone of our three
proposed propertiesof a compleity measure.That two
measuresof structureand organization passthe empirical
experimentsand also correspondwell with what we intu-
itively think of as complec indicatesthat it is not so much
the amountof information that is importantin determining
complity, ratherit is how this informationis structuredand
organized.

(1]

(2]

(3]

(4]
(5]
(6]

(7]
(8]

(9]
[20]

[11]

[12]

[13]

[14]

(18]

[16]
[17]
(18]
[19]
[20]
[21]
[22]

(23]

REFERENCES

P. J. Angeline. Morphogenicevolutionary computationsintroduction,
issuesandexamples.In J. McDonnell,B. Reynolds,andD. Fogel,ed-
itors, Proc. of the Fourth AnnualConft on EvolutionaryProgramming
pages387+401.MIT Press,1995.

C. H. Bennett. On the natureand origin of complity in discrete,
homogenous/ocally-interacting systems. Foundationsof Physics
16:585+592,1986.

P. Bentley andS. Kumar Threewaysto grow designs:A comparison
of embryogenie®f an evolutionary designproblem. In W. Banzhaf,
J.Daida,A. E. Eiben,M. H. Garzon,V. Honavar, M. JakielaandR. E.
Smith, editors, Genetic and Evolutionary ComputationConfeence
pages35+43.Morgan Kaufmann,1999.

P. J. Bentley, editor Evolutionary Design by Computes. Morgan
Kaufmann,SanFrancisco,1999.

P J.Bentley andD. W. Corne,editors.CreativeEvolutionarySystems
Morgan Kaufmann,SanFrancisco,2001.

G. J. Chaitin. On the length of programsfor computing®nite binary
sequences. Journal of the Associationof Computing Machinery,
13:547+569,1966.

B. Edmunds.SyntacticMeasues of Compleity. PhD thesis,Dept. of
Philosoply, University of Manchester1999.

M. Goldwasser J. Latombe,and R. Motwani. Compleity measures
for assemblysequenceslin Proc. IEEE Intl. Conf on Roboticsand
Automation pages1581+1587 Minneapolis,MN, Apr. 1996.

J.H. Holland. Adaptationin Natural and Arti cial SystemsUniversity
of Michigan Press,Ann Arbor, 1975.

G. Hornby Functionalscalability throughgeneratie representations:
the evolution of tabledesigns Environmentand PlanningB: Planning
and Design 31(4):569+587 July 2004.

G. S. Hornby, Genentive Repesentationgor Evolutionary Design
Automation PhD thesis, Michtom School of Computer Science,
BrandeisUniversity, Waltham,MA, 2003.

G. S. Hornby, Measuring, enabling and comparing modularity
regularity and hierarcly in evolutionary design. In H.-G. B. et al.,
editor, Proc. of the Geneticand EvolutionaryComputationConfeence
GECCO-2005pagesl1729+1736New York, NY, 2005.ACM Press.
G. S. Hornby ~ ALPS: The age-layeredpopulation structure for
reducing the problem of prematureconvergence. In M. K. et al.,
editor, Proc. of the Geneticand EvolutionaryComputationConfeence
GECCO-2006pages815+822,New York, NY, 2006.ACM Press.
A. N. Kolmogorw. Threeapproacheso the quantitatve de®nition of
information. Problemsof Information Transmission1:1+17,1965.
M. Komosinskiand A. Rotaru-\arga. Comparisonof differentgeno-
type encodingdfor simulated3d agents.Arti cial Life, 7(4):395+418,
2001.

M. Koppel. Compleity, depthand sophistication.Comple Systems
1:1087+1091,1987.

J. R. Koza. GeneticProgramming:on the programmingof computes
by meansof natural selection MIT Press,Cambridge MA, 1992.

P. Prusinkievicz and A. Lindenmayer The Algorithmic Beauty of
Plants SpringerVerlag, 1990.

B. K. Rosen.Syntacticcomplity. Informationand Control, 24:305+
335,1974.

H. A. Simon. The Sciencef the Arti cial . MIT Press,Cambridge,
MA, 1969.

R. J. Solomondf. A formal theoryof inductive inference.Information
and Contol, 7:1+22,224+2541964.

K. O. Stanlg and R. Miikkulainen. A taxonomy for arti®cial
embryogew. Articial Life, 9(2):93+130,2003.

V. H. Yngve. A modeland an hypothesisfor languagestructure. In
Proceedingsof the AmericanPhilosophical Society pages444+466,
1960.

